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Cyber-Security of Critical Infrastructures

• Protection against cyber attacks and cyber terrorism

• Critical infrastructures (e.g. nuclear power plants, SCADA) 
are vulnerable

• Development of System Protection Cyber Sensor
– Easy to deploy

– Low Cost

– Increased State-Awareness

3/19



Previous Work

• Neural Network Based Intrusion Detection System for Critical Infrastructures

– offline training, not suitable for embedded cyber sensor

• Fuzzy Logic Based Anomaly Detection for Embedded Network Security Cyber Sensor

– Automatic fuzzy rule construction using 

one-pass online clustering algorithm

– Suitable for constrained computational 

resources of embedded devices
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Intrusions
Combined ANN Classification
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Current Work

• Extending the previous work 

– Using Interval Type-2 Fuzzy Logic for robust anomaly detection 
and increased cyber-security state awareness.

– Computationally efficient algorithm for  the low-cost embedded 
network security cyber sensor
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Type-1 Fuzzy Logic Controller (FLC)

• T1 FLC
– Set of linguistic rules

– Fuzzy sets describe ambiguous, 

imprecise words

Fuzzy Sets

T1 Fuzzy Logic System

Cold Medium Hot

Fuzzy Linguistic Rules

Rule Firing Strength (minimum t-norm)

Defuzzification (centroid defuzzifier)
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Interval Type-2 FLC

• T1 FLC performance is susceptible to dynamic uncertainty 

• IT2 FLC provides better handling of dynamic uncertainties
– Implements additional dimension of uncertainty – secondary grade

– Interval T2 fuzzy sets are described by footprint of uncertainty – FOU

– FOU is bounded by upper and lower membership function

T2 Fuzzy Logic System
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Cyber-Sensor

• Embedded Network Security 

Cyber Sensor

• Deployment at low level before the critical component (e.g. PLC)
– Requirements of low cost.

• Tofino embedded network security device
– Manufactured by Byres Security Inc.

– Pre-emptive threat detection, termination and 

reporting

– Specifically tailored for the needs of SCADA 

and industrial control systems

– Intel IXP425 processor, 533MHz, 64MB DRAM
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Network Data Acquisition

• Experimental test-bed
– Represents various aspects of operational control structure

– RSView32 integrated component monitoring interface

– Allen-Bradley MicroLogix 1100 PLC

– Sub-systems with buttons, potential meters fans, lights

– Linux laptop with tcpdump software for network traffic capturing 
and monitoring

– Experimental data contains normal behavior and simulated 
intrusion attempts

9/19



• Uses sliding window to compute statistical properties of a sequence of 
packets:

• Examples of extracted attributes: # IPs, Avg. time, # Protocols, # Flag 
Codes, # 0 Win. Size, # 0 Data Len., Avg. Win. Size, Avg. Data Len.

Network Data Preprocessing
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Online Learning Algorithm

• Low-memory and computational time requirements

• Based on one-pass nearest neighbor clustering

• 1) Initialize cluster P1 at position of pattern 

• 2) Iterate through all patterns and find the nearest cluster:

• 3) If                                     then add pattern       to cluster Pa

Else, create new cluster at position of  pattern 
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Online Learning Algorithm

• Online network behavior patterns extraction
– Apply the Nearest Neighbor clustering to the incoming pre-processed stream of 

packets

– Also accumulate statistical information about the patterns assigned to each cluster

• Cluster attributes:

• Modified cluster update rule for the Nearest Neighbor clustering:
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• During the testing phase, individual clusters are used to initialize IT2 
fuzzy rules:

• Non-symmetric Gaussian IT2 fuzzy set:
– Uses an interval fuzziness parameter

– Rules  describe the similarity of the observed behavior and the normal 
behavior. Hence, the output of each rule is its own firing strength

IT2 Fuzzy Rules Extraction
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IT2 Fuzzy Rule Based Anomaly Detection

• Uses IT2 fuzzy logic inference with the extracted set of normal network 
behavior fuzzy rules:

• Degree of Firing:

• Aggregate rule outputs:

• Defuzzified Output:

• Output Decision: 
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Experimental Results

• Training data – 6 datasets with 60,661 packets of normal behavior

• Testing data – 10 datasets with 583,637 packets of abnormal behavior
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Experimental Results

• 132 fuzzy rules generated

• 0% false negative rate and 1.3% false positive rate
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Experimental Results

• Improved Uncertainty handling

Similar intrusion attempt Unusual normal behavior
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Conclusion

• Developed an IT2 FLS based anomaly detection algorithm for 
embedded network security cyber sensor.

• The algorithm extracts IT2 fuzzy rules using an adapted version of the 
online nearest neighbor clustering algorithm directly from the stream of 
packets.

• The IT2 FLS offers improved cyber-security state awareness due to 
improved uncertainty handling by IT2 FSs.
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